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A B S T R A C T

Aspect-based sentiment classification, which aims at identifying the sentiment polarity of a sentence towards
the specified aspect, has become a crucial task for sentiment analysis. Existing methods have proposed effective
models and achieved satisfactory results, but they mainly focus on exploiting local structure information of
a given sentence, such as locality, sequentiality or syntactical dependency constraints within the sentence.
Recently, some research works, which utilizes global dependency information, has attracted increasing
interest and significantly boosts the performance of text classification. In this paper, we simultaneously
introduce both global structure information and local structure information into the task of aspect-based
sentiment classification, and propose a novel aspect-based sentiment classification approach, i.e., Global and
Local Dependency Guided Graph Convolutional Networks (GL-GCN). In particular, we exploit the syntactic
dependency structure as well as sentence sequential information (e.g., the output of BiLSTM) to mine the local
structure information of a sentence. On the other hand, we construct a word-document graph using the entire
corpus to reveal the global dependency information between words. In addition, an attention mechanism is
leveraged to effectively fuse both global and local dependency structure signals. Extensive experiments are
conducted on five benchmark datasets in terms of both Accuracy and F1-Score, and the results illustrate that
our proposed framework outperforms state-of-the-art methods for aspect-based sentiment classification. The
model is implemented using PyTorch and is trained on GPU GeForce GTX 2080 Ti.
1. Introduction

With the rapid growth of online review sites such as Amazon,
Yelp and IMDB, aspect-based sentiment classification has become a
crucial topic in recent years. The main challenge of aspect-based senti-
ment classification is to identify the corresponding sentiment polarity
(e.g., positive, neutral, or negative) towards a specified target when
multiple targets are available in a sentence. Fig. 1 shows an example
of aspect-based sentiment classification with multiple sentiment polar-
ities, where the sentiment polarity of food is positive, while for the
atmosphere it is negative.

In recent years, a number of efforts have been made towards effec-
tively modeling semantic relatedness between context words and the
aspects within a sentence. Liu and Zhang (2017) and Wang, Huang,
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Zhao, and Zhu (2016) propose to utilize attention mechanisms Bah-
danau, Cho, and Bengio (2015) together with Recurrent Neural Net-
works (RNN) (Bengio, Ducharme, Vincent, & Janvin, 2003; Hochreiter
& Schmidhuber, 1997) for aspect-based sentiment classification. It
assigns a positive weight for each context word, which reflects the
importance of the word for determining the sentiment polarity of the
specified target.

Fan et al. (2018) find that the sentiment of an aspect is usually
determined by key phrases rather than individual words. Based on this
observation, Li, Bing, Lam, and Shi (2018) and Xue and Li (2018)
propose to employ Convolutional Neural Networks (CNNs) (Lecun,
Bottou, Bengio, & Haffner, 1998) to capture multi-word phrases via the
convolution operations over word sequences. As CNN and RNN priori-
tize locality and sequentiality (Battaglia, Hamrick, Bapst, et al., 2018),
these models can effectively capture semantic and syntactic information
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Fig. 1. An example of aspect-based sentiment classification with multiple sentiment
polarities.

in local consecutive word sequences. However, they lack a mechanism
to account for long-range word dependencies, and may result in iden-
tifying irrelevant clues for determining aspect sentiment. It is worth
noting that the long-range word dependencies mentioned here is a
comparative statement. Although CNN can model word dependencies
within a sentence, they only capture local phrase-level dependencies
detected by filters (e.g., a sliding-window). In recent years, depen-
dency tree has received considerable attention since it can capture
dependency relationship between two distant words (e.g., there is a
syntactic relationship between them). Many research works propose to
leverage the dependency tree to address the issue. For example, Zhang,
Li, and Song (2019) propose to exploit syntactical dependency struc-
tures within a sentence. They build a Graph Convolutional Network
(GCN) over the dependency tree of a sentence and exploit syntactical
information to bridge the long-range word dependency.

Whereas the aforementioned works are promising and achieve sat-
isfactory results, their limitation is that they mainly rely on exploiting
local structure dependency information, such as locality, sequential-
ity or syntactical dependency constraints within a sentence, while
global structure dependency information is largely ignored. To be
specific, existing methods lack an explicit modeling of the global depen-
dency signal, which is latent in the entire corpus to reveal the global
relationships between words.

Recent research (Peng et al., 2018; Yao, Mao, & Luo, 2019) has
shown that exploiting global structure dependency information can
often significantly improve the performance of text classification. Peng
et al. (2018) convert a document into a word co-occurrence graph, and
then leverage graph convolution operations to convolve the graph. Yao
et al. (2019) propose to build a text graph for an entire corpus, where
nodes are words and documents. The edge between two word nodes
relies on word co-occurrence, and the edge between a word node and
a document node is using TFIDF. GCN is then used to capture high order
neighborhood information.

In this paper, we propose Global and Local Dependency Guided
Graph Convolutional Networks (GL-GCN), for aspect-based sentiment
classification. In particular, we leverage two kinds of GCNs to learn
different dependency structure information: (1) One GCN is leveraged
to capture global dependency structure information via exploring the
entire corpus; (2) Another GCN is utilized to model local dependency
structure information given in each sentence. The framework of the
proposed model is shown in Fig. 2.

We conducted extensive experiments on five datasets, i.e., TWIT-
TER, LAPTOP, REST14, REST15, and REST16. All datasets are publicly
available and have been widely used in the task of aspect-based sen-
timent classification. Experimental results demonstrate that the pro-
posed GL-GCN approach can effectively model both global and local
dependency structure information, and consistently outperforms the
state-of-the-art baseline methods with a large margin.

In summary, this work makes the following main contributions:

• We propose a novel aspect-based sentiment classification ap-
proach exploiting both global and local dependency structure
signals to better address the issue of long-range of multi-word
dependency.

• We propose a novel architecture, which consists of two kinds
of GCNs, to effectively encode both global and local structure
signals. Moreover, a gating mechanism is leveraged to adaptively
2

fuse these two kinds information.
• We conduct extensive experiments on five datasets demonstrating
that GL-GCN is effective in improving the embedding quality
by involving global structure information, thereby achieving the
state-of-the-art performance

The rest of this paper is organized as follows. Section 2 presents the
related work. Section 3 introduces the proposed approach GL-GCN to
aspect-based sentiment classification. Section 4 presents extensive ex-
periments to evaluate the effectiveness of our approach, and discusses
the effectiveness of involving global dependency structure information.
Section 5 concludes the paper.

2. Related work

In this section, we briefly review the related work in following two
categories: Graph Convolutional Networks and Aspect-based Sentiment
Classification.

2.1. Graph convolutional networks (GCNs)

Graph Convolutional Networks (GCNs), also known as Graph Neural
Networks, have recently achieved promising advancement in various
applications, including link prediction (Bordes, Usunier, García-Durán,
Weston, & Yakhnenko, 2013; Lin, Liu, Sun, Liu, & Zhu, 2015), recom-
mender systems (Wang, Zhao, Xie, Li, & Guo, 2019), node classifica-
tion (Gong & Ai, 2019; Kipf & Welling, 2017), text classification (Liu,
You, Zhang, Wu, & Lv, 2020; Yao et al., 2019). GCNs can be generally
categorized as spectral and spatial methods.

Spectral GCNs conduct convolution operation on graph spectral
domains and apply spectral filtering operation on spectral domains.
For example, Bruna, Zaremba, Szlam, and LeCun (2014) model the
global structure of a graph with the spectrum of the graph-Laplacian
to generalize the convolution operation. Kipf and Welling (2017) ex-
ploit the spectral structure of the graph, and propose a convolutional
architecture via a localized first-order approximation of spectral graph
convolutions. Levie, Monti, Bresson, and Bronstein (2019) employ an
efficient spectral filtering scheme based on the new class of Cayley
polynomials, which holds similar advantages of the Chebyshev filters
such as localization and linear complexity in the number of edges.

Apart from spectral GCNs, spatial GCNs have recently attracted an
increasing attention by researchers. Spatial approaches learn embed-
dings via aggregating a node’s neighborhood information and multi-
hop convolutional operations is used to model higher-order proximity
information. For example, some recent works (Zhang et al., 2019;
Zhang, Qi, & Manning, 2018) are devoted to applying GCN over de-
pendency trees of sentences in order to exploit long-range multi-word
relations. Zhang et al. (2018) encode the dependency structure over
the input sentence with graph convolution operations, and then ex-
tracts entity-centric representations for relation extraction. Zhang et al.
(2019) address aspect-based sentiment classification by applying a
multi-layered graph convolution structure on top of the LSTM output,
and then utilize a masking mechanism to obtain aspect-specific fea-
tures. There also have been several recent efforts proposed to conduct
GCN over a knowledge graph (KG). Wang et al. (2019) investigate the
problem of KG-aware recommendation by capturing both higher-order
structure and semantic information in the KG. To calculate the repre-
sentation of a given entity in the KG, they sample a fixed-size neigh-
borhood of each node as the receptive field and conduct convolutional
operations over neighborhood information.

The most relevant literature to our work is TextGCN (Yao et al.,
2019), which proposes to leverage GCN for text classification. Specifi-
cally, they construct a large and heterogeneous text graph which con-
sists of word nodes and document nodes. Then a GCN is applied on the
constructed text graph to explicitly model word-word and document-
word relations. While TextGCN has shown state-of-the-art performance
in some text classification tasks, the effectiveness in aspect-based sen-
timent classification still remains an open problem. Inspired by (Yao
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Fig. 2. The proposed architecture of GL-GCN.
et al., 2019), we aim to extract word global dependency information
from the text graph constructed by the entire corpus. One limitation
of TextGCN is that they have to incorporate all test documents for
constructing the text graph in order to learn each test document rep-
resentation during the GCN, which would limit its practical usage. In
contrast to (Yao et al., 2019), our proposed model is more flexible
as it only relies on the training dataset to learn informative word
embeddings.

2.2. Aspect-based sentiment analysis

Early research works usually rely on hand-crafted features and
traditional classification models such as SVM (Kiritchenko, Zhu, Cherry,
& Mohammad, 2014; Wagner et al., 2014). Recently, neural network
models are of growing interest due to their capacity to learn text rep-
resentations from data without feature engineering. Tang, Qin, and Liu
(2016b) develop a deep memory network for aspect-based sentiment
classification. This model consists of multiple computational layers with
shared parameters, and each layer is a content and location based
attention model. Wang et al. (2016) propose attention-based LSTM for
aspect-level sentiment classification. It introduces an attention mecha-
nism to enforce the model to attend to the important part of a sentence
concerning the given aspect. Zhang, Zhang, and Vo (2016) further
use a gated recurrent neural network layer to model syntactic and
semantic information of the input text. The gated neural network is
used to explicitly model the interaction between the left context, the
right context and the target. As LSTM based models treat each context
word equally (with the same operation), it cannot explicitly reveal the
importance of each context word. To deal with this issue, Chen, Sun,
Bing, and Yang (2017) adopts a multiple-attention mechanism, which
are non-linearly combined with a recurrent neural network, to capture
sentiment features separated by a long distance. Ma, Li, Zhang, and
Wang (2017) adopted two attention networks to interactively learn
3

attentions in the context and targets, and generate the representations
for target and contexts separately. Some recent works also propose to
adopt convolutional neural networks for aspect-based sentiment clas-
sification, which has been shown that competitive performance can be
achieved by capturing multi-word phrases. Xue and Li (2018) employed
convolutional neural networks and gating mechanisms. In particular,
it has two separate convolutional layers on the top of the embedding
layer, and a gating unit is then used to combine the output of the
two convolutional layers. Works mentioned above cannot sufficiently
determine sentiments depicted by long-range multi-word relations. To
account for this limitation, very recently, Zhang et al. (2019) applied a
GCN over the dependency tree of a sentence to extract exploit long-
range multi-word relations and syntactical information. Specifically,
they propose a multi-layered graph convolution structure on top of the
LSTM output, and then apply a masking mechanism to keep high-level
aspect-specific features. These aspect-specific features will be fed back
to the LSTM output for retrieving informative features according to the
aspect.

One major limitation of existing methods is that they mainly focus
on exploiting local structure information of a given sentence, such as
locality, sequentiality or syntactical dependency constraints within the
sentence.

3. Our approach

The main novelty of our proposed approach GL-GCN is to exploit
both global and local dependency structure signals to better address
the issue of long-range of multi-word dependency. In this section, we
present the details of GL-GCN. In particular, we first formulate the
problem of aspect-based sentiment classification as well as the graph
convolutional networks, then present the framework of our GL-GCN
model and introduce the global dependency module as well as the
local dependency module. At last, we present how to obtain final
representation and model training.
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Table 1
Notations and their definitions.

Notation Definition

𝑆 A sentence with 𝑛-words
𝑛 Length of 𝑆
𝑚 Length of the aspect
𝑤𝑖 The 𝑖th word in 𝑆
𝑀 An embedding matrix
𝑉 The vocabulary (the set of nodes)
𝑑𝑒 Dimension of the word embedding
𝐸 Word embedding sequence
𝑒𝑤𝑖

The embedding of the 𝑖th word in 𝑆
𝐻 The output hidden state vectors of BiLSTM
ℎ𝑖 The 𝑖th hidden state vector of BiLSTM
𝐺 A graph
𝐴 The adjacency matrix of 𝐺
𝐿 The maximum layer of GCN
𝑊 (𝑙) Trainable weight matrix for the 𝑙th layer of GCN
𝑏(𝑙) Trainable bias for the 𝑙th layer of GCN
ℎ(𝑙)
𝑖 The output vector of the 𝑖th layer for node 𝑖

𝜎 A nonlinear function
�̃� The adjacency matrix with self-loops of 𝐺
𝐼 A 𝑛 × 𝑛 identity matrix
𝑑𝑖 The degree of the 𝑖th node in 𝐺
𝑔(𝑖) The position weight of the 𝑖th word in 𝑆
𝜏 A position indicator related to the aspect term
𝐴′ Weighted matrix of the text graph
𝑌 The ground-truth label matrix
𝐸𝑔 Global word embedding matrix
𝑍𝑔 Word embedding matrix fused with global and local signals
�̃�𝑔 Position-aware transformation of 𝑍𝑔

�̃�𝑔
𝑚𝑎𝑠𝑘 Aspect masked �̃�𝑔

𝛽𝑡 Global dependency attention weight of the 𝑡th word
𝛿𝑡 Fused global and local attention weight of the 𝑡th word
𝑟 Aspect-oriented hidden representation of sentence 𝑆

3.1. Problem formulation

Given a 𝑛-words sentence 𝑆 = (𝑤1,… , 𝑤𝜏+1,… , 𝑤𝜏+𝑚,
, 𝑤𝑛) as well as an 𝑚-words aspect starting from the (𝜏 + 1)-th

ord, the goal of aspect-based sentiment classification is to identify
he sentiment polarity of the sentence 𝑆 given the specified aspect.
o this end, we first embed the sentence with an embedding matrix
∈ R|𝑉 |×𝑑𝑒 , where |𝑉 | denotes the vocabulary size and 𝑑𝑒 is the em-

edding dimension. In particular, we embed each word in the sentence
nto a low-dimensional real-valued word embedding, and obtain 𝐸 =
𝑒𝑤1

,… , 𝑒𝑤𝜏+1
,… , 𝑒𝑤𝜏+𝑚

,… , 𝑒𝑤𝑛
). Then we use a bi-directional LSTM

BiLSTM), which is leveraged for modeling the sequential property of
sentence. We concatenate the hidden vectors from both directions of

STM and construct hidden state vectors 𝐻 = (ℎ1,… , ℎ𝜏+1,… , ℎ𝜏+𝑚,… ,
ℎ𝑛), where ℎ𝑡 ∈ R2𝑑ℎ is the hidden state at time step 𝑡, and 𝑑ℎ represents
he dimensionality of a hidden state vector of a non-direction LSTM.
inally, the output of BiLSTM will be fed into two separate modules,
here two kinds of GCN are utilized to learn attention weights from
lobal and local dependency structures, respectively. The framework of
L-GCN is illustrated in Fig. 2 and the key notations used throughout

he rest of this paper are summarized in Table 1.

.2. Graph Convolutional Networks

We first give a brief introduction of GCN, which is a multi-layer
eural network that adapts convolution operations over nodes in a
raph. Formally, we consider a graph 𝐺 = (𝑉 ,𝐸), where 𝑉 (|𝑉 | = 𝑛)
s the set of nodes and 𝐸 is the set of edges. Denote 𝐴 ∈ R𝑛×𝑛 as

the corresponding adjacency matrix of 𝐺, where 𝐴𝑖𝑗 = 1 if there is
an edge between word 𝑖 and word 𝑗. In a 𝐿-layer GCN, denote ℎ(𝑙)𝑖
𝑙 ∈ {1,… , 𝐿}) as the output of the 𝑙th layer for node 𝑖, the graph
onvolution operation can be formally defined as:

(𝑙)
𝑖 = 𝜎(

𝑘
∑

𝐴𝑖𝑗𝑊
(𝑙)ℎ(𝑙−1)𝑗 + 𝑏(𝑙)) (1)
4

𝑗=1
here 𝑊 (𝑙) is a linear transformation weight, 𝑏(𝑙) is a bias term, and 𝜎 is
nonlinear function (e.g., ReLU). Through the above graph convolution
peration, each node can aggregate information from its immediate
eighbors, and a 𝐿-layer GCN then can be used to gather information
rom neighboring nodes within 𝐿 steps.

3.3. Local dependency attention

In this section, we introduce how to obtain aspect-oriented attention
from local dependency structure. To address this issue, inspired by
the work in (Zhang et al., 2019), we perform a graph convolution
network over dependency trees of sentences, and apply it on top of the
BiLSTM mentioned above. Through this process, long-range multi-word
relations at sentence level can be effectively captured. To be specific,
we first construct a dependency tree for each given sentence, and obtain
its adjacency matrix 𝐴 ∈ R𝑛×𝑛 according to the words in the sentence.
Then we apply the graph convolution operation to model dependency
trees. As suggested in (Zhang et al., 2019, 2018), we add self-loops
to each node and normalize the activations in the graph convolution
before converting it through the nonlinearity, which can be formalized
as follows:

ℎ(𝑙)𝑖 = 𝜎(
𝑛
∑

𝑗=1
�̃�𝑖𝑗𝑊

(𝑙)ℎ(𝑙−1)𝑗 ∕𝑑𝑖 + 𝑏(𝑙)) (2)

where �̃� = 𝐴 + 𝐼 with 𝐼 being the 𝑛 × 𝑛 identity matrix, 𝑑𝑖 =
∑𝑛

𝑗=1 �̃�𝑖𝑗
enotes the degree of the 𝑖th node, 𝑊 (𝑙) and 𝑏(𝑙) are layer-specific
rainable parameters.

Similar to (Li et al., 2018; Zhang et al., 2019), a position-aware
ransformation is leveraged to reveal the importance of context words
ith respect to the given aspect. Specifically, we define the position
eight to the 𝑖th word as follows:

(𝑖) =

⎧

⎪

⎨

⎪

⎩

1 − 𝜏+1−𝑖
𝑛 1 ≤ 𝑖 < 𝜏 + 1

0 𝜏 + 1 ≤ 𝑖 ≤ 𝜏 + 𝑚
1 − 𝑖−𝜏−𝑚

𝑛 𝜏 + 𝑚 < 𝑖 ≤ 𝑛
(3)

Therefore, the graph convolution operation in Eq. (2) will be refor-
mulated as:

ℎ(𝑙)𝑖 = 𝜎(
𝑛
∑

𝑗=1
𝑔(𝑗)�̃�𝑖𝑗𝑊

(𝑙)ℎ(𝑙−1)𝑗 ∕𝑑𝑖 + 𝑏(𝑙)) (4)

The final output of the 𝐿-layer GCN over dependency trees is 𝐻 (𝐿) =
(ℎ(𝐿)1 ,… , ℎ(𝐿)𝜏+1,… , ℎ(𝐿)𝜏+𝑚,… , ℎ(𝐿)𝑛 ). We further apply an aspect-specific
masking layer on top by masking out non-aspect word states with zeros,
and the output of masking layer is 𝐻 (𝐿)

𝑚𝑎𝑠𝑘 = (0,… , ℎ(𝐿)𝜏+1,… , ℎ(𝐿)𝜏+𝑚,… , 0).
Then, the local dependency attention weights 𝛼 are computed as fol-
lows:

𝑒𝑡 =
𝜏+𝑚
∑

𝑖=𝜏+1
ℎ𝑡

𝑇 ℎ(𝐿)𝑖 (5)

𝛼𝑡 =
𝑒𝑥𝑝(𝑒𝑡)

∑𝑛
𝑖=1 𝑒𝑥𝑝(𝑒𝑖)

(6)

3.4. Global dependency attention

In this section, we aim at learning global dependency attention
weights by extracting word global dependency structure information.
There are many works devoted to extracting word global dependency
structures, such as word co-occurrence graph (Peng et al., 2018) or
text graph (Yao et al., 2019). Compared with constructing a word co-
occurrence graph, a text graph consists of both words and sentences
as nodes. With sentence node as bridge, long-range word relations
over the entire corpus can be captured, which will be used to further
enhance the word representation learning. Thus, in this work, we
pretrain a TextGCN over the text graph to learn informative word
representations from a global perspective.
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Fig. 3. Illustration of the TextGCN Framework. The bold line denotes the document-word edge weighted by the TF-IDF value, and the light line depicts the word-word edge
weighted by the PMI value.
TextGCN: It is worth noting that the original work TextGCN ap-
proach (Yao et al., 2019) learns sentence1 representations for the test
data during the training phase, which will restrict its real applications.
In our work, we only leverage sentences in the training data to pre-
train a word embedding matrix from a global dependency view, which
will be easily incorporated into our proposed model. In particular, a
text graph is constructed from the training corpus consisting of words
and sentences as nodes. The edge between two word nodes is built by
utilizing global word co-occurrence information, and the edge between
a word node and a sentence node is built by using the TF-IDF of the
word in the document. Formally, the weight of an edge between node
𝑖 and node 𝑗 is defined as

𝐴′
𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝑀𝐼(𝑖, 𝑗) 𝑖, 𝑗 are words, 𝑃𝑀𝐼(𝑖, 𝑗) > 0
𝑇𝐹 − 𝐼𝐷𝐹 (𝑖, 𝑗) 𝑖 is document, 𝑗 is word
1 𝑖 = 𝑗
0 otherwise

(7)

The PMI value of a word pair 𝑖, 𝑗 is computed as

𝑃𝑀𝐼(𝑖, 𝑗) = log
𝑝(𝑖, 𝑗)
𝑝(𝑖)𝑝(𝑗)

(8)

𝑝(𝑖, 𝑗) =
#𝑁(𝑖, 𝑗)
#𝑁

(9)

𝑝(𝑖) =
#𝑁(𝑖)
#𝑁

(10)

where #𝑁(𝑖) is the number of sliding windows in a corpus that contain
word 𝑖, #𝑁(𝑖, 𝑗) is the number of sliding windows that contain both
word 𝑖 and 𝑗, and #𝑁 is the total number of sliding windows in the
corpus. Here, we only consider edges between word nodes with positive
PMI values.

We then apply a two-layer GCN, named TextGCN, over the text
graph, which is formulated as:

𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(�̄�′𝜎(�̄�′𝑋𝑊0)𝑊1) (11)

where �̄�′ = 𝐷−1∕2𝐴′𝐷−1∕2, 𝑌 is the output, 𝑋 is a matrix containing
all 𝑛 nodes with their features, 𝑊0 and 𝑊1 are trainable weight matrix.
The loss function is defined as the cross-entropy error over all labeled
sentences:

𝐺 = −
∑

𝑑∈𝐷

𝐹
∑

𝑓=1
𝑌𝑑𝑓 log 𝑌𝑑𝑓 (12)

where 𝐷 is the set of sentences with labels and 𝐹 is the dimension of
the output features, i.e., the number of classes. 𝑌 is the ground-truth
label matrix. The framework of the TextGCN is illustrated in Fig. 3.

1 In TextGCN, they focus on long text scenarios(i.e., document), while in
our work, we consider short-text(i.e., sentence).
5

We pre-train a TextGCN over the entire corpus, and obtain word
representations which will be used as the word embedding matrix.
The learnt word representations reflect word semantic relations from
a global dependency perspective. With the learnt word embedding
matrix in hand, we then embed the original input sentence and obtain
𝐸𝑔 = (𝑒𝑔𝑤1

,… , 𝑒𝑔𝑤𝜏+1
,… , 𝑒𝑔𝑤𝜏+𝑚

,… , 𝑒𝑔𝑤𝑛
). After that, we combine 𝐸𝑔 with

the output of BiLSTM 𝐻 using a gate mechanism. Formally, the fused
hidden representation 𝑍𝑔 are computed by:

𝐺 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑔𝑒
𝑔
𝑤𝑖

+𝑊ℎℎ𝑖 + 𝑏𝑔),
𝑧𝑔𝑖 = 𝐺 ⊙ 𝑒𝑔𝑤𝑖

+ (1 − 𝐺)⊙ ℎ𝑖
(13)

where 𝑊𝑔 ∈ R2𝑑ℎ×2𝑑ℎ , 𝑊ℎ ∈ R2𝑑ℎ×2𝑑ℎ , and 𝑏𝑔 ∈ R2ℎ are the param-
eters in the gating layer. In order to learn the aspect-oriented global
dependency attention weights, we further involve a position-aware
transformation layer as well as an aspect-specific masking layer as
conducted in the local dependency attention module. In particular, we
apply a position-aware transformation of 𝑍𝑔 and obtain �̃�𝑔 = (�̃�𝑔1 ,… ,
�̃�𝑔𝜏+1,… , �̃�𝑔𝜏+𝑚,… , �̃�𝑔𝑛) where �̃�𝑔𝑖 = 𝑔(𝑖)𝑧𝑔𝑖 . Then an aspect-specific mask-
ing layer is applied on top of it and we obtain �̃�𝑔

𝑚𝑎𝑠𝑘 = (0,… , �̃�𝑔𝜏+1,… ,
�̃�𝑔𝜏+𝑚,… , 0). Finally, we obtain the global dependency attention weights
𝛽, which are computed as follows:

𝑒𝑡 =
𝜏+𝑚
∑

𝑖=𝜏+1
ℎ𝑡

𝑇 �̃�𝑔𝑖 (14)

𝛽𝑡 =
𝑒𝑥𝑝(𝑒𝑡)

∑𝑛
𝑖=1 𝑒𝑥𝑝(𝑒𝑖)

(15)

3.5. Obtaining final representation and model training

The final representation of the sentence with a given aspect will
be calculated by leveraging both aspect-oriented global and local de-
pendency attention information. Formally, we simply add both global
and local attention weights, and obtain the fused attention weights
𝛿𝑡 = 𝛼𝑡 + 𝛽𝑡, 𝑡 = (1,… , 𝑛). We also apply others attention weight fusion
strategies, such as multiply or maximum, and the results show that a
simple add operation demonstrates a superior performance. Finally, the
aspect-oriented hidden representation of sentence 𝑟 are computed as
follows:

𝑟 =
𝑛
∑

𝑡=1
𝛿𝑡ℎ𝑡 (16)

We then feed 𝑟 into a fully-connected layer and a softmax layer to
produce a probability distribution 𝑝 ∈ R𝑑𝑝 as follows:

𝑝 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑝𝑟 + 𝑏𝑝) (17)

where 𝑑𝑝 equals to the number of sentiment labels, 𝑊𝑝 ∈ R𝑑𝑝×2𝑑ℎ and
𝑑 ∈ R𝑑𝑝 are trainable weights and bias.
𝑝
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Table 2
Statistics of the datasets.

Dataset #Positive #Neutral #Negative

TWITTER Train 1561 3127 1560
Test 173 346 173

LAPTOP Train 994 464 870
Test 341 169 128

REST14 Train 2164 637 807
Test 728 196 196

REST15 Train 912 36 256
Test 326 34 182

REST16 Train 1240 69 439
Test 469 30 117

For model training, we use the standard gradient descent algorithm
ith the cross-entropy loss and a 𝐿2-regularization:

= −
∑

𝑑∈𝐷

𝐹
∑

𝑓=1
𝑌𝑑𝑓 log 𝑝𝑑𝑓 + 𝜆‖𝛩‖2 (18)

here 𝐷 is the set of sentences with labels, 𝐹 is the number of
lasses. 𝑌 is the ground-truth label matrix, 𝑝𝑑𝑓 is the predicted prob-
bility of the document 𝑑 to the 𝑓 th class, and 𝜆 is the coefficient of
2-regularization.

. Experiments

In this section, we compare our method with a range of competitive
aselines on five real-world datasets.

.1. Datasets

We conduct our evaluation on five real-world datasets: TWITTER ,
APTOP, REST14 , REST15 and REST16. The TWITTER dataset con-
ains twitter posts, which are built by Dong, Wei, Tan, Tang, Zhou,
nd Xu (2014). The other four datasets (LAPTOP, REST14, REST15,
EST16) are built by Pontiki et al. (2016), Pontiki, Galanis, Papa-
eorgiou, Manandhar, and Androutsopoulos (2015), Pontiki, Galanis,
avlopoulos, et al. (2014)). In our experiments, similar to Tang et al.
2016b), we remove instances which have conflicting polarities or no
xplicit aspects. The statistics of all datasets are summarized in Table 2.

.2. Baselines

We compare the proposed approach to the following 7 state-of-the-
rt methods :

• SVM (Kiritchenko et al., 2014): This model won the SemEval-
2014 Task 4. It is based on a traditional support vector machine
and relies on conventional feature extraction for aspect-level
sentiment classification.

• LSTM (Tang, Qin, Feng, & Liu, 2016a): This is an effective LSTM
model for target-dependent sentiment classification, which used
the last hidden state vector for the prediction.

• MemNet (Tang et al., 2016b): Unlike feature-based models SVM
and sequential neural models such as LSTM, this model consid-
ered contextual information as external memories for inferring
the sentiment polarity of an aspect.

• AOA (Huang, Ou, & Carley, 2018): It captures the interaction
between aspects and context sentences, and jointly learn the rep-
resentations for both aspects and sentences. In particular, the tar-
get representation and text representation generated from LSTMs
interact with each other through an attention-over-attention mod-
ule (Cui, Chen, Wei, Wang, Liu, & Hu, 2017).
6

• IAN (Ma et al., 2017): It proposes to interactively learn attentions
in the contexts and targets, and generate the representations
for targets and contexts separately. To be specific, it computes
the context representation via utilizing the attention mechanism
associated with a target, and then uses the interactive information
from context to supervise the modeling of the target.

• TNet-LF (Li et al., 2018): It proposes target specific transforma-
tion component to integrate target information into the word
representation, and employs a CNN layer to extract salient fea-
tures from the transformed word representations originated from
previous LSTM-based layers.

• ASGCN (Zhang et al., 2019): To exploit the long-range word
dependencies, this work considers syntactical information by ap-
plying a Graph Convolutional Network (GCN) over the depen-
dency tree of a sentence. Specifically, it starts with a BiLSTM
layer to capture contextual information regarding word orders.
Then it implements a multi-layered graph convolution structure
to obtain aspect-specific features, which is followed by a masking
mechanism to keep high-level aspect specific features.

• ASCNN (Zhang et al., 2019): This is simplified model of ASGCN,
which replaces 2-layer GCN with a 2-layer CNN in ASGCN. To
some extent, ASCNN shares a similar spirit with TNet-LF, where
both methods account for target specific transformation as well
as leverage CNN layer to capture multi-word phrase signals.

4.3. Evaluation metrics

For evaluation, we adopt two metrics, accuracy (ACC) and macro-
averaged F1-score (F1), to measure the performance of aspect-based
sentiment classification.

• ACC: Accuracy measures the percentage of correct predicted sam-
ples in all samples. Formally, it is defined as:

𝐴𝑐𝑐 = 𝑇
𝑁

(19)

where 𝑇 denotes the number of correctly predicted samples,
and 𝑁 denotes the total number of samples. A higher accuracy
indicates a better performance.

• F1: In this work, we use Macro-averaged F1 (Peng et al., 2018)
which evaluates averaged F1 of all different class-labels. It gives
equal weight to each label. Formally, Macro-averaged F1 is de-
fined as:

𝐹1 = 1
|𝐶|

∑

𝑡∈𝐶

2𝑃𝑡𝑅𝑡
𝑃𝑡 + 𝑅𝑡

(20)

where 𝑃𝑡 =
𝑇𝑃𝑡

𝑇𝑃𝑡+𝐹𝑃𝑡
, 𝑅𝑡 =

𝑇𝑃𝑡
𝑇𝑃𝑡+𝐹𝑁𝑡

, and 𝑇𝑃𝑡, 𝐹𝑃𝑡, 𝐹𝑁𝑡 denote the true-
positives, false-positives, and false-negatives for the 𝑡th label in a label
et 𝐶, respectively.

.4. Experimental settings

For GL-GCN, we initialize word embeddings using a 300-dimensio-
al pretrained GloVe vectors (Pennington, Socher, & Manning, 2014).
he dimension for hidden states of TextGCN is set to 600, which is
qual to the dimension of the output hidden states of BiLSTM. The
umber of GCN layers for syntactical dependency tree and text graph
re set to 2, which is the best setting as reported in previous studies.
e use Adam as the optimizer with a learning rate of 0.003. The

oefficient of 𝐿2-regularization is 10−5 and batch size is 32. We run
the experiments 3 times with random initialization and report the
averaged performance. We also perform paired t-test to verify whether
the improvements achieved by our methods over the baselines are
significant. We implement GL-GCN using PyTorch. All the experiments
are conducted on the hardware with Intel Core CPU I7-9700K 3.6 GHz
and NVIDIA GeForce GTX 2080TI.
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Table 3
The performance comparison of all approaches in terms of Accuracy (ACC) and F1-score (F1). The best two
performing approaches are shown in bold.

Model TWITTER LAPTOP REST14 REST15 REST16

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

SVM 63.40 63.30 70.49 N/A 80.16 N/A N/A N/A N/A N/A
LSTM 69.56 67.70 69.28 63.09 78.13 67.47 77.37 55.17 86.80 63.88
MemNet 71.48 69.90 70.64 65.17 79.61 69.64 77.31 58.28 85.44 65.99
AOA 72.30 70.20 72.62 67.52 79.97 70.42 78.17 57.02 87.50 66.21
IAN 72.50 70.81 72.05 67.38 79.26 70.09 78.54 52.65 84.74 55.21
TNet-LF 72.98 71.43 74.61 70.14 80.42 71.03 78.47 59.47 89.07 70.43
ASCNN 71.05 69.45 72.62 66.72 81.73 73.10 78.47 58.90 87.39 64.56
ASGCN-DG 72.15 70.40 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48
GL-GCN 73.26* 71.26* 76.91** 72.76** 82.11** 73.46** 80.81 64.99* 88.47 69.64

*Indicates statistical significance at 𝑝-value < 0.05 using the paired t-test with regard to the strongest
baseline ASGCN-DG.
**Indicates statistical significance at 𝑝-value < 0.01 using the paired t-test with regard to the strongest
baseline ASGCN-DG.
Table 4
Ablation study results in terms of Accuracy (ACC) and F1-score (F1). The best two performing approaches
are in bold.

Model TWITTER LAPTOP REST14 REST15 REST16

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

G-GCN(w/o pos.) 69.56 67.96 73.67 69.25 80.27 71.40 78.11 60.53 86.85 64.91
G-GCN(w/o mask) 70.86 69.08 71.42 66.21 79.70 68.59 76.94 54.49 85.82 62.69
G-GCN 72.30 70.65 73.93 69.68 79.99 69.21 78.53 59.13 87.12 66.09
L-GCN(w/o pos.) 72.69 70.59 73.93 69.63 81.22 72.94 79.58 61.55 88.04 66.63
L-GCN(w/o mask) 72.64 70.63 72.05 66.56 79.04 68.29 77.80 57.51 86.36 61.41
L-GCN 72.15 70.40 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48
GL-GCN 73.26 71.26 76.91 72.76 82.11 73.46 80.81 64.99 88.47 69.64
Table 5
Performance of GL-GCN with respect to different numbers of aspects and polarities.

Datasets Model Multi-Aspect & Multi-Polarity Multi-Aspect & Same-Polarity Single-Aspect

Acc F1 Acc. F1 Acc. F1

LAPTOP
ASCNN 64.95 63.42 84.47 77.72 75.34 71.44
ASGCN 60.82 60.50 86.21 80.42 75.00 71.14
GL-GCN 61.85 61.00 86.74 79.43 76.02 72.60

REST14
ASCNN 66.2 65.54 88.77 77.44 82.03 75.18
ASGCN 67.13 65.94 89.47 78.68 81.42 73.61
GL-GCN 66.67 65.79 89.81 79.31 82.59 75.12

REST15
ASCNN 60.18 50.19 92.52 59.27 80.60 65.28
ASGCN 63.43 53.57 91.61 58.81 81.32 64.08
GL-GCN 65.28 53.62 93.20 60.31 81.63 66.98

REST16
ASCNN 74.70 52.26 96.80 62.10 86.56 68.94
ASGCN 72.22 60.44 96.13 61.28 86.46 71.89
GL-GCN 74.07 67.29 96.27 64.62 87.47 73.17
4.5. Overall performance

The performance comparison results are shown in Table 3. With
the exception of REST16, the proposed model GL-GCN achieves the
best performance on all datasets with respect to both evaluation met-
rics ACC and F1, which demonstrates the superiority of our model.
Specifically, we observe that the method SVM obtains an uncompeti-
tive performance as compared with these deep neural network based
approaches. The method LSTM outperforms SVM on the dataset TWIT-
TER, and achieves comparable results over LAPTOP dataset. The three
methods MemNet, AOA and IAN share a similar strategy of leveraging
the attention mechanism to capture the interaction between contexts
and aspects, and they demonstrate better or competitive performance
compared to LSTM. The method TNet-LF, which employs a CNN layer
as well as considers target information into the word representation,
presents a better performance than all above mentioned baselines. It
reveals that multi-word phrase can be effectively modeled by the CNN
module. ASCNN is a simplified version of ASGCN-DG and it uses a
CNN layer to replace the GCN layer in ASGCN-DG. The different per-
7

formance between ASCNN and ASGCN-DG indicates the effectiveness
of exploiting the dependency tree to preserve the long-range multi-
word syntactic relations. Our proposed method GL-GCN shows superior
performance compared with all baselines. The results verify that it
is critical to incorporate both global and local dependency structure
signals as they can compensate each other, and GL-GCN can effectively
capture both structure signals by two kinds of GCNs and fuse two
dependency structure signals via a gating mechanism.

4.6. Ablation study

To investigate the impact of each component, such as the global
dependency attention module and the local dependency attention mod-
ule, we perform comparison between GL-GCN models and its ablations.
In Table 4, L-GCN represents a model which removes the global de-
pendency attention module from GL-GCN. It is worth noting that
L-GCN is equivalent to the best performing baseline ASGCN-DG. G-
GCN denotes a model which removes the local dependency attention
module from GL-GCN. From Table 4, we observe that GL-GCN achieves
a superior performance compared with both L-GCN and G-GCN on all

datasets in term of both ACC and F1 metrics. This reveals that global
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Table 6
Case Study. Visualization of attention scores from ASCNN, ASGCN and GL-GCN on testing samples, along with their corresponding predictions and gold labels.

Model Aspect Attention visualization Prediction TrueLabel

ASCNN

windows 8 did not enjoy the new windows 8 and touchscreen functions. positive× negative

ssd performance is much much better on the pro, especially if you install an ssd on it. neutral× positive

drinks a beautiful atmosphere, perfect for drinks and/or appetizers . positive× neutral

pialla the food is just okay, and it’s almost not worth going unless you are getting the pialla, which is
the only dish that is really good.

negative× positive

ASGCN

windows 8 did not enjoy the new windows 8 and touchscreen functions. negative
√

negative

ssd performance is much much better on the pro, especially if you install an ssd on it. neutral× positive

drinks a beautiful atmosphere, perfect for drinks and/or appetizers. positive× neutral

pialla the food is just okay , and it is almost not worth going unless you are getting the pialla,

which is the only dish that is really good.

neutral× positive

GL-GCN

windows 8 did not enjoy the new windows 8 and touchscreen functions. negative
√

negative

ssd performance is much much better on the pro, especially if you install an ssd on it. positive
√

positive

drinks a beautiful atmosphere , perfect for drinks and/or appetizers . neutral
√

neutral

pialla the food is just okay, and it is almost not worth going unless you are getting the pialla , which

is the only dish that is really good .

positive
√

positive
Fig. 4. ROC curves of the proposed model GL-GCN, and two most competitive baselines (i.e., ASGCN and ASCNN) on three datasets (i.e., Twitter, Lap14, Rest14).
dependency structure and local dependency structure can contribute
complementary information.

We also investigate the influences of position weights and aspect-
specific masking in G-GCN and L-GCN, respectively. Table 4 shows
that position weights and aspect-specific masking play a critical role
in G-GCN. In particular, removal of position weights from G-GCN,
i.e., G-GCN (w/o pos.), results in performance decline on TWITTER and
REST16, while does not affect the performance on the remaining three
datasets. One reason would be that position weights would not helpful
to reduce noise when modeling the aspect-specific representation. In
addition, removal of aspect-specific masking G-GCN (w/o mask) from
G-GCN will cause a considerable drop of performance on all datasets,
8

which indicates the significance of aspect-specific masking in G-GCN.
Similar results can also be observed in L-GCN.

4.7. Performance over different numbers of aspects and polarities

In this section, we further investigate the effectiveness of our pro-
posed method considering different numbers of aspects and polarities.
For simplicity, we manually group all test samples into three categories:
1) Single-Aspect, sentences in this category only have one aspect; 2)
Multi-Aspect & Multi-Polarity, sentences in this category have more
than two aspects and the polarity of these aspects are different; 3)
Multi-Aspect & Same-Polarity, sentences in this category have more
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Fig. 5. Learning curves of the proposed model GL-GCN, and two most competitive baselines (i.e., ASGCN and ASCNN) on three datasets (i.e., Twitter, Lap14, Rest14).
han two aspects and all aspects have the same polarity. Table 5 shows
he results of different comparing methods on four datasets. Please note
hat all samples of the TWITTER dataset only have one aspect, and we
o not take it into consideration.

From Table 5, on the Single-Aspect, we can observe that GL-
CN considerably outperforms the two most competitive baselines

i.e., ASCNN and ASGCN) on three datasets (i.e., LAPTOP, REST15 and
EST16). For example, GL-GCN achieves a F1 score of 72.60 on the
APTOP dataset, which is 1.12 and 1.46 higher than that of ASCNN
nd ASGCN, respectively. We observe similar results on REST15 and
EST16. On the dataset REST14, GL-GCN obtains a competitive F1
core as compared to that of the two baselines. On the Accuracy metric,
L-GCN consistently outperforms both ASCNN and ASGCN.

On the Multi-Aspect & Same Polarity, our proposed method GL-
CN has a superior or competitive performance as compared with two
aselines. It is interesting that on the Multi-Aspect & Multi-Polarity, GL-
CN does not demonstrate a substantially improvement over the two
aselines. The reason would that the task becomes more complicated
hen sentences with multiple aspects and multiple polarities. We leave

his issue as the future work.

.8. Case study

To better understand how GL-GCN works, in this section, we present
case study with several testing samples. In particular, we visualize the
ttention scores offered by ASCNN, ASGCN and GL-GCN in Table 6,
long with their predictions on these samples and the corresponding
round truth labels. The first sample is "did not enjoy the new windows
and touchscreen functions ’’., which contains negation in the sentence

nd can easily lead models to make wrong predictions. The second
ample is "performance is much much better on the pro , especially
f you install an ssd on it ’’. The aspect word in this sentence is far
way from the corresponding opinion word, thus it is difficult for
he model to capture its true emotional polarity. The third sample is
a beautiful atmosphere , perfect for drinks and/or appetizers ’’. For
entences with neutral sentimental polarity and positive words in the
entence, the model is generally difficult to make a correct prediction.
9

The last sample is "the food is just okay , and it’s almost not worth
going unless you are getting the pialla , which is the only dish that’s
really good’’., in which there are two aspect words, and the model can
easily mix up the corresponding opinion words.

From Table 6, we can observe that ASCNN fails in all four samples.
Although ASGCN can integrate syntactic relevance information into
rich semantic representations, it still fails in most of the cases as it faces
difficult to distinguish sentences with neutral terms and sentimental
polarity. Our model GL-GCN handles all four samples correctly, which
reflects that the local and global dependency information modeled
by GL-GCN plays a crucial role in recognizing sentences sentimental
polarity.

4.9. Simulation performance

To further investigate the performance of our proposed approach
GL-GCN, we compare the Receiver Operating Characteristic (ROC)
curves of GL-GCN with that of two most competitive baselines (i.e., AS-
GCN and ASCNN) on three datasets (i.e., Twitter, Lap14, Rest14).
As ROC curve is usually used for the binary classification task, we
leverage two variants of ROC curve, named macro-average ROC curve
and micro-average ROC curve, for our multi-class classification task.

Fig. 4 shows the ROC curves of our method GL-GCN and two
baselines. We can observe that on all three datasets, GL-GCN consis-
tently demonstrates superior performance as compared with ASGCN
and ASCNN with respect to both macro-average ROC curves (top row
of Fig. 4) and micro-average ROC curves (bottom row of Fig. 4). In
addition, we also give the Area Under the Curve (AUC) value of each
method on three datasets in Fig. 4. The results show that GL-GCN
obtains a higher AUC value as compared with that of ASGCN and
ASCNN.

4.10. Learning curve

We further conduct experiments on three datasets (i.e., TWITTER,
LAPTOP, REST14) to investigate the convergence speed of the proposed
methods. It is worth noting that we apply early stopping for training
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the model, which stops training once the model performance stops
improving on the validation set. Fig. 5 shows the learning curve of GL-
GCN and two most competitive baselines (i.e., ASGCN and ASCNN).
From Fig. 5, we can observe that: First, our proposed model achieves
its best performance at a small epoch. For example, GL-GCN obtains the
best performance at epoch 7, 15 and 4 on the TWITTER, LAPTOP, and
REST14, respectively. Second, our model consistently outperforms both
ASGCN and ASCNN, which verifies the effectiveness of the proposed
model.

5. Conclusion

In this paper, we investigate the aspect-based sentiment classifica-
tion problem and propose a novel model, Global and Local Dependency
Guided Graph Convolutional Network (GL-GCN), to deal with it. Based
on the text graph built on the entire corpus, we apply a graph convo-
lutional network to mine word global semantic dependency relations.
Further, a dependency tree built on a sentence is leveraged to extract
word local syntactic dependency relations. Extensive experiments are
conducted on five real-word datasets, and experimental results show
that our proposed method achieves superior performance compared to
the state-of-the-art methods.
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